Plasmid DNA encoding IFN-gamma-inducible protein 10 redirects antigen-specific T cell polarization and suppresses experimental autoimmune encephalomyelitis

IFN-gamma-inducible protein 10 (IP-10) is a CXC chemokine that stimulates the directional migration of activated T cells, particularly Th1 cells. We demonstrate in this work that during activation this chemokine drives naive CD4(+) T cells into Th1 polarization. Administration of plasmid DNA encodin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of immunology (1950) 2002-06, Vol.168 (11), p.5885-5892
Hauptverfasser: Wildbaum, Gizi, Netzer, Nir, Karin, Nathan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:IFN-gamma-inducible protein 10 (IP-10) is a CXC chemokine that stimulates the directional migration of activated T cells, particularly Th1 cells. We demonstrate in this work that during activation this chemokine drives naive CD4(+) T cells into Th1 polarization. Administration of plasmid DNA encoding self IP-10 was found capable of breaking down immunological tolerance to IP-10, resulting in the generation of self-specific immunity to the gene product of the vaccine. Despite the CpG motif that drives T cells into Th1, the vaccine redirected the polarization of myelin basic protein-specific T cells into Th2 and conferred the vaccinated recipients a high state of resistance against experimental autoimmune encephalomyelitis, a T cell-mediated autoimmune disease of the CNS. The vaccine also suppressed full-blown ongoing disease in a mouse model of multiple sclerosis. Self-specific Ab to IP-10 developed in protected animals could inhibit leukocyte migration, alter the in vitro Th1/Th2 balance of autoimmune T cells, and adoptively transfer disease suppression. This demonstrates not only the pivotal role of a chemokine in T cell polarization and function but also its potential implications for plasmid DNA gene therapy.
ISSN:0022-1767
1550-6606
DOI:10.4049/jimmunol.168.11.5885