Alpha syntrophin deletion removes the perivascular but not the endothelial pool of aquaporin‐4 at the blood‐brain barrier and delays the development of brain edema in an experimental model of acute hyponatremia

The formation of brain edema, commonly occurring as a potentially lethal complication of acute hyponatremia, is delayed following knockout of the water channel aquaporin‐4 (AQP4). Here we show by high‐resolution immunogold analysis of the blood–brain‐barrier that AQP4 is expressed in brain endotheli...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The FASEB journal 2004-03, Vol.18 (3), p.542-544
Hauptverfasser: Amiry‐Moghaddam, Mahmood, Xue, Rong, Haug, Finn‐Mogens, Neely, John D., Bhardwaj, Anish, Agre, Peter, Adams, Marvin E., Froehner, Stanley C., Mori, Susumu, Ottersen, Ole P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The formation of brain edema, commonly occurring as a potentially lethal complication of acute hyponatremia, is delayed following knockout of the water channel aquaporin‐4 (AQP4). Here we show by high‐resolution immunogold analysis of the blood–brain‐barrier that AQP4 is expressed in brain endothelial cells as well as in the perivascular membranes of astrocyte endfeet. A selective removal of perivascular AQP4 by α‐syntrophin deletion delays the buildup of brain edema (assessed by Diffusion‐weighted MRI) following water intoxication, despite the presence of a normal complement of endothelial AQP4. This indicates that the perivascular membrane domain, which is peripheral to the endothelial blood–brain barrier, may control the rate of osmotically driven water entry. This study is also the first to demonstrate that the time course of edema development differs among brain regions, probably reflecting differences in aquaporin‐4 distribution. The resolution of the molecular basis and subcellular site of osmotically driven brain water uptake should help design new therapies for acute brain edema.
ISSN:0892-6638
1530-6860
DOI:10.1096/fj.03-0869fje