Calcium oscillation linked to pacemaking of interstitial cells of Cajal: requirement of calcium influx and localization of TRP4 in caveolae

Interstitial cells of Cajal (ICC) are considered to be pacemaker cells in gastrointestinal tracts. ICC generate electrical rhythmicity (dihydropyridine-insensitive) as slow waves and drive spontaneous contraction of smooth muscles. Although cytosolic Ca(2+) has been assumed to play a key role in pac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2002-05, Vol.277 (21), p.19191-19197
Hauptverfasser: Torihashi, Shigeko, Fujimoto, Toyoshi, Trost, Claudia, Nakayama, Shinsuke
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Interstitial cells of Cajal (ICC) are considered to be pacemaker cells in gastrointestinal tracts. ICC generate electrical rhythmicity (dihydropyridine-insensitive) as slow waves and drive spontaneous contraction of smooth muscles. Although cytosolic Ca(2+) has been assumed to play a key role in pacemaking, Ca(2+) movements in ICC have not yet been examined in detail. In the present study, using cultured cell clusters isolated from mouse small intestine, we demonstrated Ca(2+) oscillations in ICC. Fluo-4 was loaded to the cell cluster, the relative amount of cytosolic Ca(2+) was recorded, and ICC were identified by c-Kit immunoreactivity. We specifically detected Ca(2+) oscillation in ICC in the presence of dihydropyridine, which abolishes Ca(2+) oscillation in smooth muscles. The oscillation was coupled to the electrical activity corresponding to slow waves, and it depended on Ca(2+) influx through a non-selective cation channel, which was SK&F 96365-sensitive and store-operated. We further demonstrated the presence of transient receptor potential-like channel 4 (TRP4) in caveolae of ICC. Taken together, the results infer that the Ca(2+) oscillation in ICC is intimately linked to the pacemaker function and depends on Ca(2+) influx mediated by TRP4.
ISSN:0021-9258
DOI:10.1074/jbc.M201728200