Permutation entropy: a natural complexity measure for time series
We introduce complexity parameters for time series based on comparison of neighboring values. The definition directly applies to arbitrary real-world data. For some well-known chaotic dynamical systems it is shown that our complexity behaves similar to Lyapunov exponents, and is particularly useful...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2002-04, Vol.88 (17), p.174102-174102, Article 174102 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We introduce complexity parameters for time series based on comparison of neighboring values. The definition directly applies to arbitrary real-world data. For some well-known chaotic dynamical systems it is shown that our complexity behaves similar to Lyapunov exponents, and is particularly useful in the presence of dynamical or observational noise. The advantages of our method are its simplicity, extremely fast calculation, robustness, and invariance with respect to nonlinear monotonous transformations. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/physrevlett.88.174102 |