Rotating convection in an anisotropic system
We study the stability of patterns arising in rotating convection in weakly anisotropic systems using a modified Swift-Hohenberg equation. The anisotropy, either an endogenous characteristic of the system or induced by external forcing, can stabilize periodic rolls in the Küppers-Lortz chaotic regim...
Gespeichert in:
Veröffentlicht in: | Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics Statistical physics, plasmas, fluids, and related interdisciplinary topics, 2002-04, Vol.65 (4 Pt 2A), p.046219-046219, Article 046219 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the stability of patterns arising in rotating convection in weakly anisotropic systems using a modified Swift-Hohenberg equation. The anisotropy, either an endogenous characteristic of the system or induced by external forcing, can stabilize periodic rolls in the Küppers-Lortz chaotic regime. We apply this to the particular case of rotating convection with time-modulated rotation where recently, in experiment, spiral and target patterns have been observed in otherwise Küppers-Lortz-unstable regimes. We show how the underlying base flow breaks the isotropy, thereby affecting the linear growth rate of convection rolls in such a way as to stabilize spirals and targets. Throughout we compare analytical results to numerical simulations of the Swift-Hohenberg equation. |
---|---|
ISSN: | 1539-3755 1063-651X 1095-3787 |
DOI: | 10.1103/PhysRevE.65.046219 |