Characterization of the acid stability of glycosidically linked neuraminic acid: use in detecting de-N-acetyl-gangliosides in human melanoma

The glycosidic linkage of sialic acids is much more sensitive to acid hydrolysis than those of other monosaccharides in vertebrates. The commonest sialic acids in nature are neuraminic acid (Neu)-based and are typically N-acylated at the C5 position. Unsubstituted Neu is thought to occur on native g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2002-05, Vol.277 (20), p.17502-17510
Hauptverfasser: Sonnenburg, Justin L, van Halbeek, Herman, Varki, Ajit
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The glycosidic linkage of sialic acids is much more sensitive to acid hydrolysis than those of other monosaccharides in vertebrates. The commonest sialic acids in nature are neuraminic acid (Neu)-based and are typically N-acylated at the C5 position. Unsubstituted Neu is thought to occur on native gangliosides of certain tumors and cell lines, and synthetic de-N-acetyl-gangliosides have potent biological properties in vitro. However, claims for their natural existence are based upon monoclonal antibodies and pulse-chase experiments, and there have been no reports of their chemical detection. Here we report that one of these antibodies shows nonspecific cross-reactivity with a polypeptide epitope, further emphasizing the need for definitive chemical proof of unsubstituted Neu on naturally occurring gangliosides. While pursuing this, we found that alpha2-3-linked Neu on chemically de-N-acetylated G(M3) ganglioside resists acid hydrolysis under conditions where the N-acetylated form is completely labile. To ascertain the generality of this finding, we investigated the stability of glycosidically linked alpha- and beta-methyl glycosides of Neu. Using NMR spectroscopy to monitor glycosidic linkage hydrolysis, we find that only 47% of Neualpha2Me is hydrolyzed after 3 h in 10 mm HCl at 80 degrees C, whereas Neu5Acalpha2Me is 95% hydrolyzed after 20 min under the same conditions. Notably, Neubeta2Me is hydrolyzed even slower than Neualpha2Me, indicating that acid resistance is a general property of glycosidically linked Neu. Taking advantage of this, we modified classical purification techniques for de-N-acetyl-ganglioside isolation using acid to first eliminate conventional gangliosides. We also introduce a phospholipase-based approach to remove contaminating phospholipids that previously hindered efforts to study de-N-acetyl-gangliosides. The partially purified sample can then be N-propionylated, allowing acid release and mass spectrometric detection of any originally existing Neu as Neu5Pr. These advances allowed us to detect covalently bound Neu in lipid extracts of a human melanoma tumor, providing the first chemical proof for naturally occurring de-N-acetyl-gangliosides.
ISSN:0021-9258
DOI:10.1074/jbc.M110867200