Cell growth and cell division in the rod-shaped actinomycete Corynebacterium glutamicum
Bacterial cell growth and cell division are highly complicated and diversified biological processes. In most rod-shaped bacteria, actin-like MreB homologues produce helicoidal structures along the cell that support elongation of the lateral cell wall. An exception to this rule is peptidoglycan synth...
Gespeichert in:
Veröffentlicht in: | Antonie van Leeuwenhoek 2008-06, Vol.94 (1), p.99-109 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Bacterial cell growth and cell division are highly complicated and diversified biological processes. In most rod-shaped bacteria, actin-like MreB homologues produce helicoidal structures along the cell that support elongation of the lateral cell wall. An exception to this rule is peptidoglycan synthesis in the rod-shaped actinomycete Corynebacterium glutamicum, which is MreB-independent. Instead, during cell elongation this bacterium synthesizes new cell-wall material at the cell poles whereas the lateral wall remains inert. Thus, the strategy employed by C. glutamicum to acquire a rod-shaped morphology is completely different from that of Escherichia coli or Bacillus subtilis. Cell division in C. glutamicum also differs profoundly by the apparent absence in its genome of homologues of spatial or temporal regulators of cell division, and its cell division apparatus seems to be simpler than those of other bacteria. Here we review recent advances in our knowledge of the C. glutamicum cell cycle in order to further understand this very different model of rod-shape acquisition. |
---|---|
ISSN: | 0003-6072 1572-9699 |
DOI: | 10.1007/s10482-008-9224-4 |