Enhanced light trapping based on guided mode resonance effect for thin-film silicon solar cells with two filling-factor gratings

An approach of enhanced light-trapping in a thin-film silicon solar cell by adding a two-filling-factor asymmetric binary grating on it is proposed for the wavelength of near-infrared. Such a grating-on-thin-film structure forms a guided-mode resonance notch filter to couple energy diffracted from a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2008-05, Vol.16 (11), p.7969-7975
Hauptverfasser: Lee, Yun-Chih, Huang, Chian-Fu, Chang, Jenq-Yang, Wu, Mount-Learn
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An approach of enhanced light-trapping in a thin-film silicon solar cell by adding a two-filling-factor asymmetric binary grating on it is proposed for the wavelength of near-infrared. Such a grating-on-thin-film structure forms a guided-mode resonance notch filter to couple energy diffracted from an incident wave to a leakage mode of the guided layer in the solar cell. The resonance wave coupled between two-filling-factor gratings would laterally extend the optical power and induce multiple bounces within the active layer. The resonance effect traps light in the cell enhancing its absorption probability. A dynamic light-trapping behaviour in solar cells is observed. A photon dwelling time is proposed for the first time to quantify the light-trapping effect. Moreover, the light absorption probability is also quantified. As compared the grating-on-thin-film structure with the one of planar silicon thin film, simulation results reveal that it is 3-fold enhancement in the light absorption within a spectral range of 920-1040 nm. Moreover, such an enhancement can be maintained even the incident angle of near-IR broadband light wave varies up to +/-40 degrees.
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.16.007969