Dynamic states of cells adhering in shear flow: from slipping to rolling
Motivated by rolling adhesion of white blood cells in the vasculature, we study how cells move in linear shear flow above a wall to which they can adhere via specific receptor-ligand bonds. Our computer simulations are based on a Langevin equation accounting for hydrodynamic interactions, thermal fl...
Gespeichert in:
Veröffentlicht in: | Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2008-04, Vol.77 (4 Pt 1), p.041904-041904, Article 041904 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Motivated by rolling adhesion of white blood cells in the vasculature, we study how cells move in linear shear flow above a wall to which they can adhere via specific receptor-ligand bonds. Our computer simulations are based on a Langevin equation accounting for hydrodynamic interactions, thermal fluctuations, and adhesive interactions. In contrast to earlier approaches, our model not only includes stochastic rules for the formation and rupture of bonds, but also fully resolves both receptor and ligand positions. We identify five different dynamic states of motion in regard to the translational and angular velocities of the cell. The transitions between the different states are mapped out in a dynamic state diagram as a function of the rates for bond formation and rupture. For example, as the cell starts to adhere under the action of bonds, its translational and angular velocities become synchronized and the dynamic state changes from slipping to rolling. We also investigate the effect of nonmolecular parameters. In particular, we find that an increase in viscosity of the medium leads to a characteristic expansion of the region of stable rolling to the expense of the region of firm adhesion, but not to the expense of the regions of free or transient motion. Our results can be used in an inverse approach to determine single bond parameters from flow chamber data on rolling adhesion. |
---|---|
ISSN: | 1539-3755 1550-2376 |
DOI: | 10.1103/physreve.77.041904 |