Automated bead-trapping apparatus and control system for single-molecule DNA sequencing
We have been investigating a microfluidics platform for high-speed, low-cost sequencing of single DNA molecules using novel "charge-switch" nucleotides. A significant challenge is the design of a flowcell suitable for manipulating bead-DNA complexes and sorting labeled polyphosphate molecu...
Gespeichert in:
Veröffentlicht in: | Optics express 2008-03, Vol.16 (5), p.3445-3455 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We have been investigating a microfluidics platform for high-speed, low-cost sequencing of single DNA molecules using novel "charge-switch" nucleotides. A significant challenge is the design of a flowcell suitable for manipulating bead-DNA complexes and sorting labeled polyphosphate molecules by charge. The flowcell is part of a single-molecule detection instrument, creating fluorescence images from labeled polyphosphates. These images would ultimately be analyzed by signal processing algorithms to identify specific nucleotides in a DNA sequence. Here we describe requirements of the fluidics system for loading, identifying, tracking, and positioning beads. By dynamically modulating pressure gradients in the plenum chambers of a multi-channel network, we could guide individual beads with high precision to any desired coordinate and reversibly trap them in stepped channels. We show that DNA immobilized on pressure-trapped beads can be physically extended into a downstream channel under electric force for analysis. Custom dynamic algorithms for automated bead control are described. |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.16.003445 |