Comparison of phenotypic and functional dendritic cells derived from human umbilical cord blood and peripheral blood mononuclear cells

Dendritic cells (DC) are important accessory cells that are capable of initiating an immune response. Generation of functional DC has potential clinical use in treating diseases such as cancer. In this report, we have demonstrated the generation of functional DC from mononuclear cells isolated from...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hematotherapy & stem cell research 2002-04, Vol.11 (2), p.337-347
Hauptverfasser: Joshi, Shantaram S, Vu, U Eileen, Lovgren, Todd R, Lorkovic, Margaret, Patel, Wayshalee, Todd, Gordon L, Kuszynski, Charles, Joshi, Bharathi J, Dave, Harish P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Dendritic cells (DC) are important accessory cells that are capable of initiating an immune response. Generation of functional DC has potential clinical use in treating diseases such as cancer. In this report, we have demonstrated the generation of functional DC from mononuclear cells isolated from human umbilical cord blood cells (UCBC) and peripheral blood cells (PBC) using a defined medium Prime Complete Growth Medium (PCGM) (GenePrime LLC, Gaithersburg, MD). DC generated using PCGM showed the typical phenotype of DC as determined by flow cytometry and electron microscopy. Further analysis of the DC using confocal microscopy showed localization of the antigen and major histocompatibility complex (MHC) molecules in the cytoplasm 3-5 days following tumor antigen loading into DC. Subsequently, the tumor antigen-MHC complex was localized on the surface of DC. DC generated from UCBC or PBC also increased (p < 0.001) the allogeneic mixed lymphocyte reaction, confirming their immune accessory functions compared to a control mixed lymphocyte reaction (MLR) without DC added. Interestingly, DC generated using PCGM medium also significantly enhanced the hematopoietic colony (CFU-C)-forming ability. Furthermore, addition of 5% DC derived from cord blood loaded with tumor antigen also significantly (p < 0.001) increased peripheral and cord blood-derived antigen-specific cytotoxic T lymphocyte (CTL)-mediated killing of human leukemic cells (K562) and breast cancer cells (MDA-231). Thus, these results show that functional DC generated from cord blood using a defined medium are a useful source of accessory cells for augmenting CTL-mediated cytotoxicity and have potential use in cellular therapy for human leukemia and breast cancer.
ISSN:1525-8165
DOI:10.1089/152581602753658529