A Fiber-Modified Mesothelin Promoter–Based Conditionally Replicating Adenovirus for Treatment of Ovarian Cancer

Purpose: Recently, virotherapy has been proposed as a new therapeutic approach for ovarian cancer. Conditionally replicative adenoviruses (CRAd) may contain tumor-specific promoters that restrict virus replication to cancer cells. Mesothelin, a cell surface glycoprotein, is overexpressed in ovarian...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clinical cancer research 2008-06, Vol.14 (11), p.3582-3588
Hauptverfasser: Tsuruta, Yuko, Pereboeva, Larisa, Breidenbach, Martina, Rein, Daniel T, Wang, Minghui, Alvarez, Ronald D, Siegal, Gene P, Dent, Paul, Fisher, Paul B, Curiel, David T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Purpose: Recently, virotherapy has been proposed as a new therapeutic approach for ovarian cancer. Conditionally replicative adenoviruses (CRAd) may contain tumor-specific promoters that restrict virus replication to cancer cells. Mesothelin, a cell surface glycoprotein, is overexpressed in ovarian cancer but not in normal ovarian tissues. The purpose of this study was to explore the therapeutic utility of a mesothelin promoter–based CRAd in a murine model of ovarian cancer, using noninvasive in vivo imaging. Experimental Design: We constructed a mesothelin promoter–based CRAd with a chimeric Ad5/3 fiber (AdMSLNCRAd5/3) that contains an Ad5 tail, Ad5 shaft, and an Ad3 knob. Previously, a chimeric Ad5/3 fiber has shown improved infectivity in many ovarian cancer cells. Viral replication and oncolysis were assessed in a panel of ovarian cancer cell lines. To test the oncolytic efficacy of AdMSLNCRAd5/3 in a murine model, bioluminescence imaging of tumor luciferase activity and survival analysis were done. Results: AdMSLNCRAd5/3 achieved up to a 10,000-fold higher cell killing effect and up to 120-fold higher levels of viral replication in all human ovarian cancer cells, compared with wild-type Ad5. AdMSLNCRAd5/3 significantly inhibited tumor growth as confirmed by in vivo imaging ( P < 0.05). Survival with AdMSLNCRAd5/3 was significantly enhanced when compared with no virus or with a wild-type Ad5-treated group ( P < 0.05). Conclusions: The robust replication, oncolysis, and in vivo therapeutic efficacy of AdMSLNCRAd5/3 showed that this CRAd is a promising candidate for treating ovarian cancer. Importantly, we have applied in vivo imaging that has allowed repeated and longitudinal measurements of tumor growth after CRAd treatment.
ISSN:1078-0432
1557-3265
DOI:10.1158/1078-0432.CCR-07-5053