Impaired functions of neural stem cells by abnormal nitric oxide-mediated signaling in an in vitro model of Niemann-Pick type C disease

Nitric oxide (NO) has been implicated in the promotion of neurodegeneration. However, little is known about the relationship between NO and the self-renewal or differentiation capacity of neural stem cells (NSCs) in neurodegenerative disease. In this study, we investigated the effect of NO on self-r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell research 2008-06, Vol.18 (6), p.686-694
Hauptverfasser: Kim, Sun-Jung, Lim, Myung-Sin, Kang, Soo-Kyung, Lee, Yong-Soon, Kang, Kyung-Sun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nitric oxide (NO) has been implicated in the promotion of neurodegeneration. However, little is known about the relationship between NO and the self-renewal or differentiation capacity of neural stem cells (NSCs) in neurodegenerative disease. In this study, we investigated the effect of NO on self-renewal of NSCs in an animal model for Niemann-Pick type C (NPC) disease. We found that NO production was significantly increased in NSCs from NPCl-deficient mice (NPCI^-/-), which showed reduced NSC self-renewal. The number of nestin-positive cells and the size of neurospheres were both significantly decreased. The expression of NO synthase (NOS) was increased in neurospheres derived from the brain of NPC1^-/- mice in comparison to wild-type neurospheres. NO-mediated activation of glycogen synthase ki- nase-3β (GSK3β) and caspase-3 was also observed in NSCs from NPC1^-/- mice. The self-renewal ability of NSCs from NPC1^-/- mice was restored by an NOS inhibitor, L-NAME, which resulted in the inhibition of GSK3β and caspase-3. In addition, the differentiation ability of NSCs was partially restored and the number of Fluoro-Jade C-positive degenerating neurons was reduced. These data suggest that overproduction of NO in NPC disease impaired the self-renewal of NSCs. Control of NO production may be key for the treatment of NPC disease.
ISSN:1001-0602
1748-7838
DOI:10.1038/cr.2008.48