Apoptosis in Bone for Tissue Engineering

Bone loss due to congenital defects, trauma, improper fracture fixation, metabolic disturbances, infections, or after tumor resection represents a major clinical problem in head and neck surgery. To address these issues, different types of scaffolds, growth factors and cell sources—alone or in vario...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archives of medical research 2008-07, Vol.39 (5), p.467-482
Hauptverfasser: Bran, Gregor M, Stern-Straeter, Jens, Hörmann, Karl, Riedel, Frank, Goessler, Ulrich R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Bone loss due to congenital defects, trauma, improper fracture fixation, metabolic disturbances, infections, or after tumor resection represents a major clinical problem in head and neck surgery. To address these issues, different types of scaffolds, growth factors and cell sources—alone or in various combinations—have been applied for development of bioartificial bone tissues. Although these applications have received increasing interest, use of autologous bone grafts is still considered as the gold standard for tissue repair. Despite progress in some areas of tissue regeneration, significant translation into clinical practice has not been achieved. Reasons for this impass include rejection of engineered tissue implants by the immune system, limited blood supply, or morbidity of the donor site. During the process of bone regeneration, ∼50–70% of osteoblasts undergo apoptosis. Apoptosis is a naturally occurring cell death pathway induced in a variety of cell types and is associated with caspase activation or caspase mediation. It is recognized as an important component of embryogenesis and tissue morphogenesis and, in adult skeletons, it contributes substantially to physiological bone turnover, repair, and regeneration. Intracellular mechanisms are orchestrated by a variety of proteins, the interplay of which seems to vary, depending on the differentiation state of the cell or the current status of the tissue. Closing gaps in current knowledge of the apoptosis of bone and understanding the mechanisms of cell death in tissue engineered bone will improve results in the translation from bench to bedsite. This review aims to provide a broad overview of the current general concepts in apoptosis with a special focus on its regulation in osteoblasts and its significance for bone tissue engineering.
ISSN:0188-4409
1873-5487
DOI:10.1016/j.arcmed.2008.02.007