Effects of L-glutamate transport inhibition by a conformationally restricted glutamate analogue (2S, 1'S, 2'R)-2-(carboxycyclopropyl)glycine (L-CCG III) on metabolism in brain tissue in vitro analysed by nmr spectroscopy

(2S,1'S,2'R)-2-(Carboxycyclopropyl)glycine (L-CCG III) was a substrate of Na(+)-dependent glutamate transporters (GluT) in Xenopus laevis oocytes (IC50 to approximately 13 and to approximately 2 microM for, respec tively, EAAT 1 and EAAT 2) and caused an apparent inhibition of [3H]L-glutam...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neurochemical research 2002-02, Vol.27 (1-2), p.27-35
Hauptverfasser: MOUSSA, Charbel El-Hajj, MITROVIC, Ann D, VANDENBERG, Robert J, PROVIS, Tanya, RAE, Caroline, BUBB, William A, BALCAR, Vladimir J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:(2S,1'S,2'R)-2-(Carboxycyclopropyl)glycine (L-CCG III) was a substrate of Na(+)-dependent glutamate transporters (GluT) in Xenopus laevis oocytes (IC50 to approximately 13 and to approximately 2 microM for, respec tively, EAAT 1 and EAAT 2) and caused an apparent inhibition of [3H]L-glutamate uptake in "mini-slices" of guinea pig cerebral cortex (IC50 to approximately 12 microM). In slices (350 microM) of guinea pig cerebral cortex, 5 microM L-CCG III increased both the flux of label through pyruvate carboxylase and the fractional enrichment of glutamate, GABA, glutamine and lactate, but had no effect on total metabolite pool sizes. At 50 microM L-CCG III decreased incorporation of 13C from [3-13C]-pyruvate into glutamate C4, glutamine C4, lactate C3 and alanine C3. The total metabolite pool sizes were also decreased with no change in the fractional enrichment. Furthermore, L-CCG III was accumulated in the tissue, probably via GluT. At lower concentration, L-CCG III would compete with L-glutamate for GluT and the changes probably reflect a compensation for the "missing" L-glutamate. At 50 microM, intracellular L-CCG III could reach > 10 mM and metabolism might be affected directly.
ISSN:0364-3190
1573-6903
DOI:10.1023/A:1014842303583