Protein kinase signal transduction cascades in mammalian associative conditioning
One of the most intriguing and intensely studied questions facing contemporary neuroscientists involves the elucidation of the physiological mechanisms that underlie learning and memory. Recent advances have given us a much more detailed understanding of the signal transduction mechanisms subserving...
Gespeichert in:
Veröffentlicht in: | The Neuroscientist (Baltimore, Md.) Md.), 2002-04, Vol.8 (2), p.122-131 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | One of the most intriguing and intensely studied questions facing contemporary neuroscientists involves the elucidation of the physiological mechanisms that underlie learning and memory. Recent advances have given us a much more detailed understanding of the signal transduction mechanisms subserving learning in the intact animal. One fact that has become clear is that activation of protein kinases and phosphorylation of their downstream effectors play a critical role. Four protein kinase cascades have garnered considerable attention in the study of information storage at both the synaptic and behavioral levels: Ca++/phospholipid-dependent protein kinase (PKC), Ca++/calmodulin-dependent protein kinase II (CaMKII), cAMP-dependent protein kinase (PKA), and extracellular signal-regulated kinase (ERK). This review will concentrate on studies of two behavioral tasks, conditioned fear and conditioned taste aversion, that provide evidence for the involvement of these kinase systems in associative learning. The authors will also examine a number of potential kinase substrates and how each could participate in the formation of long-term memories. |
---|---|
ISSN: | 1073-8584 |
DOI: | 10.1177/107385840200800208 |