Dissociation Time from DNA Determines Transcriptional Function in a STAT1 Linker Mutant

The STAT1 transcription factor is organized into several highly conserved domains, each of which has been assigned a function with the exception of the linker domain. We previously characterized a mutant in the linker domain of STAT1 that gave normal DNA binding using a standard probe in an electrop...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2002-04, Vol.277 (16), p.13455-13462
Hauptverfasser: Yang, Edward, Henriksen, Melissa A., Schaefer, Olaf, Zakharova, Natalia, Darnell, James E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The STAT1 transcription factor is organized into several highly conserved domains, each of which has been assigned a function with the exception of the linker domain. We previously characterized a mutant in the linker domain of STAT1 that gave normal DNA binding using a standard probe in an electrophoretic mobility assay but failed to activate transcription in response to interferon γ. We now report the mechanistic basis for the inactivity of this STAT1(K544A/E545A) mutant. Rather than failing to attract transcriptional coactivators, the STAT1(K544A/E545A) mutant has a subtle biophysical defect, which prevents accumulation of the activated protein on chromatin in vivo: the mutant has comparableKd with greatly increasedkoff for DNA binding. The increase in both on-rate and off-rate of DNA binding results in a substantially reduced residence time of STAT1(K544A/E545A) on STAT binding sites. We find a similar correlation between off-rate and transcriptional potency for STAT1(N460A), which bears a mutation in the DNA binding domain. These results yield insight into the rate of complex assembly involving STAT1 that leads to transcriptional stimulation.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M112038200