A 3-D structural model of solid self-assembled chlorophyll a/H(2)O from multispin labeling and MAS NMR 2-D dipolar correlation spectroscopy in high magnetic field
Magic angle spinning (MAS) NMR with Lee-Goldburg cross-polarization (LG-CP) is used to promote long-range heteronuclear transfer of magnetization and to constrain a structural model for uniformly labeled chlorophyll a/H(2)O. An effective maximum transfer range d(max) can be determined experimentally...
Gespeichert in:
Veröffentlicht in: | Journal of magnetic resonance (1997) 2002-03, Vol.155 (1), p.1-14 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Magic angle spinning (MAS) NMR with Lee-Goldburg cross-polarization (LG-CP) is used to promote long-range heteronuclear transfer of magnetization and to constrain a structural model for uniformly labeled chlorophyll a/H(2)O. An effective maximum transfer range d(max) can be determined experimentally from the detection of a gradually decreasing series of intramolecular correlations with the (13)C along the molecular skeleton. To probe intermolecular contacts, d(max) can be set to approximately 4.2 A by choosing an LG-CP contact time of 2 ms. Long-range (1)H-(13)C correlations are used in conjunction with carbon and proton aggregation shifts to establish the stacking of the chlorophyll a (Chl a) molecules. First, high-field (14.1 T) 2-D MAS NMR homonuclear ((13)C-(13)C) dipolar correlation spectra provide a complete assignment of the carbon chemical shifts. Second, proton chemical shifts are obtained from (1)H-(13)C heteronuclear dipolar correlation spectroscopy in high magnetic field. The shift constraints and long-range (1)H-(13)C intermolecular correlations reveal a 2-D stacking homologous to the molecular arrangement in crystalline solid ethyl-chlorophyllide a. A doubling of a small subset of the carbon resonances, in the 7-methyl region of the molecule, provides evidence for two marginally different well-defined molecular environments. Evidence is found for the presence of neutral structural water molecules forming a hydrogen-bonded network to stabilize Chl a sheets. In line with the microcrystalline order observed for the rings, the long T(1)'s, and absence of conformational shifts for the (13)C in the phytyl tails, it is proposed that the Chl a form a rigid 3-D space-filling structure. Probably the only way this can be realized with the sheets is by forming bilayers with interpenetration of elongated tails. Such a 3-D space-filling organization of the aggregated Chl a from MAS NMR would match existing models inferred from electron microscopy and low-resolution X-ray powder diffraction, while a micellar model based on neutron diffraction and antiparallel stacking observed in solution can be discarded. |
---|---|
ISSN: | 1090-7807 |