Electrospun nanofibrous structure: A novel scaffold for tissue engineering

The architecture of an engineered tissue substitute plays an important role in modulating tissue growth. A novel poly(D,L‐lactide‐co‐glycolide) (PLGA) structure with a unique architecture produced by an electrospinning process has been developed for tissue‐engineering applications. Electrospinning i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomedical materials research 2002-06, Vol.60 (4), p.613-621
Hauptverfasser: Li, Wan-Ju, Laurencin, Cato T., Caterson, Edward J., Tuan, Rocky S., Ko, Frank K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The architecture of an engineered tissue substitute plays an important role in modulating tissue growth. A novel poly(D,L‐lactide‐co‐glycolide) (PLGA) structure with a unique architecture produced by an electrospinning process has been developed for tissue‐engineering applications. Electrospinning is a process whereby ultra‐fine fibers are formed in a high‐voltage electrostatic field. The electrospun structure, composed of PLGA fibers ranging from 500 to 800 nm in diameter, features a morphologic similarity to the extracellular matrix (ECM) of natural tissue, which is characterized by a wide range of pore diameter distribution, high porosity, and effective mechanical properties. Such a structure meets the essential design criteria of an ideal engineered scaffold. The favorable cell–matrix interaction within the cellular construct supports the active biocompatibility of the structure. The electrospun nanofibrous structure is capable of supporting cell attachment and proliferation. Cells seeded on this structure tend to maintain phenotypic shape and guided growth according to nanofiber orientation. This novel biodegradable scaffold has potential applications for tissue engineering based upon its unique architecture, which acts to support and guide cell growth. © 2002 Wiley Periodicals, Inc. J Biomed Mater Res 60: 613–621, 2002
ISSN:0021-9304
1097-4636
DOI:10.1002/jbm.10167