Spontaneous breaking of time-reversal symmetry in the pseudogap state of a high-Tc superconductor

A change in 'symmetry' is often observed when matter undergoes a phase transition-the symmetry is said to be spontaneously broken. The transition made by underdoped high-transition-temperature (high-Tc) superconductors is unusual, in that it is not a mean-field transition as seen in other...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2002-04, Vol.416 (6881), p.610-613
Hauptverfasser: KAMINSKI, A, ROSENKRANZ, S, HÖCHST, H, FRETWELL, H. M, CAMPUZANO, J. C, LI, Z, RAFFY, H, CULLEN, W. G, YOU, H, OLSON, C. G, VARMA, C. M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A change in 'symmetry' is often observed when matter undergoes a phase transition-the symmetry is said to be spontaneously broken. The transition made by underdoped high-transition-temperature (high-Tc) superconductors is unusual, in that it is not a mean-field transition as seen in other superconductors. Rather, there is a region in the phase diagram above the superconducting transition temperature Tc (where phase coherence and superconductivity begin) but below a characteristic temperature T* where a 'pseudogap' appears in the spectrum of electronic excitations. It is therefore important to establish if T* is just a cross-over temperature arising from fluctuations in the order parameter that will establish superconductivity at Tc (refs 3, 4), or if it marks a phase transition where symmetry is spontaneously broken. Here we report that, for a material in the pseudogap state, left-circularly polarized photons give a different photocurrent from right-circularly polarized photons. This shows that time-reversal symmetry is spontaneously broken below T*, which therefore corresponds to a phase transition.
ISSN:0028-0836
1476-4687
DOI:10.1038/416610a