Affinity Labeling of a Single Guanine Bulge
We have developed a conceptually new method for the selective labeling of duplex DNA containing a guanine bulge with a masked form of fluorescent 2-amino-1,8-naphthyridine. A naphthyridine derivative 2 tethering DNA-alkylating epoxide was synthesized from (S)-epichlorohydrin and naphthyridine deriva...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2003-07, Vol.125 (30), p.8972-8973 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We have developed a conceptually new method for the selective labeling of duplex DNA containing a guanine bulge with a masked form of fluorescent 2-amino-1,8-naphthyridine. A naphthyridine derivative 2 tethering DNA-alkylating epoxide was synthesized from (S)-epichlorohydrin and naphthyridine derivative 1, which selectively binds to the guanine bulge duplex. HPLC analysis of the labeling reaction of bulge duplex d(GTT GTGTTG GA)/d(CAA CA A ACC T) (TGT/A_A) with 2 showed a formation of 2−TGT adduct for the guanine bulge. The reaction proceeded for the guanine bulge and a reduced efficiency for the cytosine bulge, but not at all for adenine and thymine bulges. The site of covalent bond formation in 2−TGT was unambiguously identified at the guanine two bases away from the bulge by the use of MALDI-TOF MS analysis of the oligomer fragments produced by strand scission. The labeling reaction was also observed for the guanine bulge flanking two G−C base pairs (CGC/ G_G), producing a 2:1 adduct (2·2-CGC). Upon hydrolysis of 2−TGT and 2·2-CGC with concentrated hydrogen chloride, a release of fluorescent 2-aminonaphthyridine from the adduct was clearly detected, verifying a concept of an affinity labeling of the guanine bulge with a masked fluorescent chromophore. The affinity labeling targeting of the guanine bulge is a conceptually novel method for the postsynthetic labeling of DNA. Hybridization, to the target sequence, of a probe DNA possessing one extra guanine especially between two cytosines provides a unique site for the labeling by masked fluorophore 2. The technique may have broad application in genetic typing without using a conventional synthesis of fluorescent-labeled DNA oligomers. |
---|---|
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/ja0350740 |