Biomechanical analysis of cervical orthoses in flexion and extension: A comparison of cervical collars and cervical thoracic orthoses

The analysis of current cervical collars (Aspen and Miami J collars) and cervical thoracic orthoses (CTOs) (Aspen 2-post and Aspen 4-post CTOs) in reducing cervical intervertebral and gross range of motion in flexion and extension was performed using 20 normal volunteer subjects. The gross sagittal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of rehabilitation research and development 2003-11, Vol.40 (6), p.527-537
Hauptverfasser: GAVIN, Thomas M, CARANDANG, Gerard, HAVEY, Robert, FLANAGAN, Patrick, GHANAYEM, Alexander, PATWARDHAN, Avinash G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The analysis of current cervical collars (Aspen and Miami J collars) and cervical thoracic orthoses (CTOs) (Aspen 2-post and Aspen 4-post CTOs) in reducing cervical intervertebral and gross range of motion in flexion and extension was performed using 20 normal volunteer subjects. The gross sagittal motion of the head was measured relative to the horizon with the use of an optoelectronic motion measurement system. Simultaneous measurement of cervical intervertebral motion was performed with the use of a video fluoroscopy (VF) machine. Intervertebral motion was described as (1) the angular motion of each vertebra and (2) the translational motion of the vertebral centroid. We used surface electromyographic (EMG) signal data to compare subject efforts between the two collars and between the two CTOs. Each orthosis significantly reduced gross and intervertebral motion in flexion and extension (p < 0.05). No statistically significant differences were found between the Miami J and Aspen collars in reducing gross or intervertebral sagittal motion, except at C5-6. Both CTOs provided significantly more restriction of gross and intervertebral flexion and extension motion as compared to the two collars (p < 0.05). The Aspen 2-post CTO and 4-post CTO performed similarly in flexion, but the Aspen 4-post CTO provided significantly more restriction of extension motion (p < 0.05).
ISSN:0748-7711
1938-1352
DOI:10.1682/JRRD.2003.11.0527