Differential expression of alpha 1 and beta subunits of voltage dependent Ca2+ channel at the neuromuscular junction of normal and P/Q Ca2+ channel knockout mouse
Voltage-dependent calcium channels (VDCC) have a key role in neuronal function transforming the voltage signals into intracellular calcium signals. They are composed of the pore-forming alpha(1) and the regulatory alpha(2)delta, gamma and beta subunits. Molecular and functional studies have revealed...
Gespeichert in:
Veröffentlicht in: | Neuroscience 2004, Vol.123 (1), p.75-85 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Voltage-dependent calcium channels (VDCC) have a key role in neuronal function transforming the voltage signals into intracellular calcium signals. They are composed of the pore-forming alpha(1) and the regulatory alpha(2)delta, gamma and beta subunits. Molecular and functional studies have revealed which alpha(1) subunit gene product is the molecular constituent of each class of native calcium channel (L, N, P/Q, R and T type). Electrophysiological and immunocytochemical studies have suggested that at adult mouse motor nerve terminal (MNT) only P/Q type channels, formed by alpha(1A) subunit, mediate evoked transmitter release. The generation of alpha(1A)-null mutant mice offers an opportunity to study the expression and localization of calcium channels at a synapse with complete loss of P/Q calcium channel. We have investigated the expression and localization of VDCCs alpha(1) and beta subunits at the wild type (WT) and knockout (KO) mouse neuromuscular junction (NMJ) using fluorescence immunocytochemistry. The alpha(1A) subunit was observed only at WT NMJ and was absent at denervated muscles and at KO NMJ. The subunits alpha(1B), alpha(1D) and alpha(1E) were also present at WT NMJ and they were over- expressed at KO NMJ suggesting a compensatory expression due to the lack of the alpha(1A). On the other hand, the beta(1b), beta(2a) and beta(4) were present at the same levels in both genotypes. The presence of other types of VDCC at WT NMJ indicate that they may play other roles in the signaling process which have not been elucidated and also shows that other types of VDCC are able to substitute the alpha(1A) subunit, P/Q channel under certain pathological conditions. |
---|---|
ISSN: | 0306-4522 |