Rapid and sensitive static headspace gas chromatography–mass spectrometry method for the analysis of ethanol and abused inhalants in blood

A sensitive and specific method using static headspace gas chromatography coupled with mass spectrometry (GC/MS) has been developed for the quantitative determination of ethanol in biological fluids using n-propanol as internal standard. Gas chromatography was performed in isothermal mode with a GC...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chromatography. B, Analytical technologies in the biomedical and life sciences Analytical technologies in the biomedical and life sciences, 2004-01, Vol.799 (2), p.331-336
Hauptverfasser: Wasfi, Ibrahim A, Al-Awadhi, Ahmed Hassan, Al-Hatali, Zainat Naser, Al-Rayami, Fatima Juma, Al Katheeri, Nawal Abdulla
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A sensitive and specific method using static headspace gas chromatography coupled with mass spectrometry (GC/MS) has been developed for the quantitative determination of ethanol in biological fluids using n-propanol as internal standard. Gas chromatography was performed in isothermal mode with a GC run time of 2.6 min. The quantification was performed using scan mode abstracting a quantitative ion and a qualifier ion for ethanol and for the internal standard. The method was linear ( r 2, 0.999, in the concentration range of 5–200 mg/dl), specific (no interference from methanol acetaldehyde, acetone or from endogenous materials), sensitive (limit of quantification and limit of detection of 0.2 and 0.02 mg/dl, respectively) and robust (less than 5% inter- and intra-assay coefficient of variation). A slightly modified method was also developed for the quantification of five commonly abused inhalants (dichloromethane, ethyl acetate, benzene, toluene and xylene) in blood. The method used a gradient GC program with a run time of 8 min. The quantification was performed using scan mode and integrating the area under the peak using trichloroethane as an internal standard. Without optimization, the method was linear (from 5 to 100 mg/l) and sensitive.
ISSN:1570-0232
1873-376X
DOI:10.1016/j.jchromb.2003.11.003