Role of intracellular Ca2+ in the expression of the amiloride-sensitive epithelial sodium channel

The amiloride-sensitive epithelial sodium channel (ENaC), a multimeric plasma membrane protein composed of alpha-, beta-, and gamma-ENaC subunits, mediates Na(+) reabsorption in epithelial tissues, including the distal nephron, colon, lung, and secretory glands, and plays a critical role in pathophy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell calcium (Edinburgh) 2004-01, Vol.35 (1), p.21-28
Hauptverfasser: Rao, U Subrahmanyeswara, Baker, James M, Pluznick, Jennifer L, Balachandran, Premalatha
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The amiloride-sensitive epithelial sodium channel (ENaC), a multimeric plasma membrane protein composed of alpha-, beta-, and gamma-ENaC subunits, mediates Na(+) reabsorption in epithelial tissues, including the distal nephron, colon, lung, and secretory glands, and plays a critical role in pathophysiology of essential hypertension and cystic fibrosis (CF). The function of ENaC is tightly regulated by signals elicited by aldosterone, vasopressin, agents that increase intracellular cAMP levels, ions, ion channels, G-protein-coupled mechanisms, and cytoskeletal proteins. In this paper, the effects of Ca(2+) on the expression of the human ENaC subunits expressed in human embryonic kidney cells (HEK-293 cells) were examined. Incubation of cells with increased extracellular Ca(2+) and treatment of cells with A23187 and thapsigargin stimulated the expression of the monomeric ENaC subunits. Treatment of cells with Ca(2+)-chelating agents, EGTA and BAPTA-AM, reduced the levels of ENaC subunit expression. The pulse-chase experiments suggested that a rise in the intracellular Ca(2+) increases the ENaC subunit expression. Immunoblot analysis using the anti-ubiquitin antibody indicated that ENaC undergoes ubiquitination. A correlation between the processes that regulate ENaC function with the intracellular Ca(2+) was discussed.
ISSN:0143-4160
DOI:10.1016/S0143-4160(03)00157-X