Knockdown of spinal cord postsynaptic density protein-95 prevents the development of morphine tolerance in rats
The activation of spinal cord N-methyl- d-aspartate (NMDA) receptors and subsequent intracellular cascades play a pivotal role in the development of opioid tolerance. Postsynaptic density protein-95 (PSD-95), a molecular scaffolding protein, assembles a specific set of signaling proteins around NMDA...
Gespeichert in:
Veröffentlicht in: | Neuroscience 2004, Vol.123 (1), p.11-15 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The activation of spinal cord
N-methyl-
d-aspartate (NMDA) receptors and subsequent intracellular cascades play a pivotal role in the development of opioid tolerance. Postsynaptic density protein-95 (PSD-95), a molecular scaffolding protein, assembles a specific set of signaling proteins around NMDA receptors at neuronal synapses. The current study investigated the possible involvement of PSD-95 in the development of opioid tolerance. Opioid tolerance was induced by intrathecal injection of morphine sulfate (20 μg/10 μl) twice a day for 4 consecutive days. Co-administration of morphine twice daily and PSD-95 antisense oligodeoxynucleotide (50 μg/10 μl) once daily for 4 days not only markedly reduced the PSD-95 expression and its binding to NMDA receptors in spinal cord but also significantly prevented the development of morphine tolerance. In contrast, co-administration of morphine twice daily and PSD-95 missense oligodeoxynucleotide (50 μg/10 μl) once daily for 4 days did not produce these effects. The PSD-95 antisense oligodeoxynucleotide at the doses we used did not affect baseline response to noxious thermal stimulation or locomotor function.
The present study indicates that the deficiency of spinal cord PSD-95 attenuates the development of opioid tolerance. These results suggest that PSD-95 might be involved in the central mechanisms of opioid tolerance and provide a possible new target for prevention of development of opioid tolerance. |
---|---|
ISSN: | 0306-4522 1873-7544 |
DOI: | 10.1016/j.neuroscience.2003.09.007 |