Inward current oscillation underlying tonic contraction caused via ETA receptors in pig detrusor smooth muscle

Endothelin-1 (ET-1) is a powerful vasoconstricting peptide. Recent studies showed synthesis of ET-1 and the presence of ET receptors in urinary bladder smooth muscle cells. In the present study, we investigated the possible role of ET-1 in detrusor contraction and its underlying mechanisms in terms...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of physiology. Renal physiology 2004-01, Vol.286 (1), p.F77-F85
Hauptverfasser: Kajioka, Shunichi, Nakayama, Shinsuke, McCoy, Rachel, McMurray, Gordon, Abe, Kihachiro, Brading, Alison F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Endothelin-1 (ET-1) is a powerful vasoconstricting peptide. Recent studies showed synthesis of ET-1 and the presence of ET receptors in urinary bladder smooth muscle cells. In the present study, we investigated the possible role of ET-1 in detrusor contraction and its underlying mechanisms in terms of electrical activity. ET-1 caused dose-dependent tonic contraction of bladder smooth muscle strips. Whole cell patch-clamp experiments revealed that ET-1 induced a single transient inward current in the majority of detrusor cells and that additional inward current oscillations were induced in one-third of the cells. The inward current oscillation and tonic contraction shared several characteristic features: 1) both activities lasted for a considerable time after ET-1 washout and 2) only prior application of ETA receptor antagonists, not ETB receptor antagonists, significantly suppressed ET-1-induced contractions and the oscillating inward currents. It was concluded that the inward current oscillation underlies ET-1-induced tonic contraction. Experiments with ion substitution and channel blockers suggested that periodic activation of Ca2+-activated Cl- channels caused the oscillating inward currents.
ISSN:1931-857X
DOI:10.1152/ajprenal.00355.2002