NF-kB signaling blockade abolishes implant particle-induced osteoclastogenesis
In this study we investigated the effect of NF-kB signaling blockade on polymethylmethacrylate (PMMA) particle-induced osteoclastogenesis in vitro. We first established effective blockade of NF-kB activity as tested by electrophoretic mobility shift assays (EMSA). Particle-induced NF-kB activation i...
Gespeichert in:
Veröffentlicht in: | Journal of orthopaedic research 2004, Vol.22 (1), p.13-20 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this study we investigated the effect of NF-kB signaling blockade on polymethylmethacrylate (PMMA) particle-induced osteoclastogenesis in vitro. We first established effective blockade of NF-kB activity as tested by electrophoretic mobility shift assays (EMSA). Particle-induced NF-kB activation in murine osteoclast precursor cells (CSF-1-dependent bone marrow macrophages) was markedly reduced by co-treatment of the cells with the NF-kB inhibitors
N-tosyl-
L-phenylalanine chloromethyl ketone (TPCK) and Calpain Inhibitor I (CPI). This inhibition of NF-kB activity was associated with blockade of p50 NF-kB subunit nuclear translocation. We then established a direct NF-kB inhibition approach by utilizing a TAT-bound, mutant IkB (TAT:IkB
46-317), and demonstrated an inhibitory effect evidenced by decreased NF-kB DNA binding activity. Having established that these strategies (TPCK, CPI, TAT: IkB
46-317) effectively block NF-kB activation, we next investigated the effect of these agents on particle-stimulated osteoclast formation. PMMA particle stimulation of mature osteoclast formation from RANKL-primed osteoclast precursor cells was blocked by all three inhibitors. To further test the efficacy of NF-kB blockade, experiments were performed with the TAT:IkB
46-317 mutant peptide in whole bone marrow cultures that contain supporting stromal cells. Again, this inhibitor efficiently blocked particle-induced osteoclastogenesis. Thus, we have shown that pharmaceutical and molecular blockade of NF-kB activation inhibits PMMA particle-directed osteoclastogenesis in vitro. |
---|---|
ISSN: | 0736-0266 1554-527X |
DOI: | 10.1016/S0736-0266(03)00156-6 |