Tetrad-FISH analysis reveals recombination suppression by interstitial heterochromatin sequences in rye (Secale cereale)

Tetrad analysis is a genetic method that can locate genes and centromeres on a linkage map with a high degree of precision. Despite its effectiveness and accuracy, application of this method is generally limited to fungi, algae and mosses. Here we demonstrate a new method of tetrad analysis that is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular genetics and genomics : MGG 2002-03, Vol.267 (1), p.10-15
Hauptverfasser: Kagawa, N, Nagaki, K, Tsujimoto, H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Tetrad analysis is a genetic method that can locate genes and centromeres on a linkage map with a high degree of precision. Despite its effectiveness and accuracy, application of this method is generally limited to fungi, algae and mosses. Here we demonstrate a new method of tetrad analysis that is applicable to other organisms. This combines tetrad analysis with fluorescence in situ hybridization (FISH), and is thus referred to as tetrad-FISH analysis. We demonstrate the effectiveness of this method using tetrads of rye, Secale cereale. The rye strain JNK contains interstitial heterochromatin in a region of Chromosome 2R. We have previously cloned the tandemly repeated sequence forming this heterochromatin in the plasmid pScJNK. We performed FISH using pScJNK as the probe on tetrads obtained from heterozygotes for the heterochromatin region. The frequency of tetrads demonstrating positive signals in two cells that are diagonally opposite one another must correspond to the frequency of recombination in the interval between the heterochromatin and the centromere. Comparison between the results of tetrad-FISH analysis and linkage maps based on RFLP markers clearly indicated that heterochromatin strongly suppresses recombination of whole chromosomal regions. We discuss the effectiveness of tetrad-FISH analysis, particularly for the localization of functional centromeres in linkage maps.
ISSN:1617-4615
1617-4623
DOI:10.1007/s00438-001-0634-5