Roughness induced dynamic changes of wettability of acid etched titanium implant modifications

Dynamic contact angle analysis (DCA) was used to investigate time-dependent wettability changes of sandblasted and acid-etched commercially pure (cp) titanium (Ti) implant modifications during their initial contact with aqueous systems compared to a macrostructured reference surface. Surface topogra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomaterials 2004-03, Vol.25 (7), p.1429-1438
Hauptverfasser: Rupp, F., Scheideler, L., Rehbein, D., Axmann, D., Geis-Gerstorfer, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Dynamic contact angle analysis (DCA) was used to investigate time-dependent wettability changes of sandblasted and acid-etched commercially pure (cp) titanium (Ti) implant modifications during their initial contact with aqueous systems compared to a macrostructured reference surface. Surface topography was analyzed by scanning electron microscopy and by contact stylus profilometry. The microstructured Ti surfaces were found to be initially extremely hydrophobic. This hydrophobic configuration can shift to a completely wettable surface behavior with water contact angles of 0° after the first emersion loop during DCA experiments. It is suggested that a hierarchically structured surface topography could be responsible for this unexpected wetting phenomenon. Roughness spatial and hybrid parameters could describe topographical features interfering with dynamic wettability significantly better than roughness height parameters. The Ti modifications which shift very sudden from a hydrophobic to a hydrophilic state adsorbed the highest amount of immunologically assayed fibronectin. The results suggest that microstructuring greatly influences both the dynamic wettability of Ti implant surfaces during the initial host contact and the initial biological response of plasma protein adsorption. The microstructured surfaces, once in the totally wettable configuration, may improve the initial contact with host tissue after implantation, due to the drastically increased hydrophilicity.
ISSN:0142-9612
1878-5905
DOI:10.1016/j.biomaterials.2003.08.015