Potential improvements in the therapeutic ratio of prostate cancer irradiation: dose escalation of pathologically identified tumour nodules using intensity modulated radiotherapy

The potential of intensity modulated radiotherapy (IMRT) to improve the therapeutic ratio in prostate cancer by dose escalation of intraprostatic tumour nodules (IPTNs) was investigated using a simultaneous integrated boost technique. The prostate and organs-at-risk were outlined on CT images from s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:British journal of radiology 2002-02, Vol.75 (890), p.151-161
Hauptverfasser: NUTTING, C. M, CORBISHLEY, C. M, SANCHEZ-NIETO, B, COSGROVE, V. P, WEBB, S, DEARNALEY, D. P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The potential of intensity modulated radiotherapy (IMRT) to improve the therapeutic ratio in prostate cancer by dose escalation of intraprostatic tumour nodules (IPTNs) was investigated using a simultaneous integrated boost technique. The prostate and organs-at-risk were outlined on CT images from six prostate cancer patients. Positions of IPTNs were transferred onto the CT images from prostate maps derived from sequential large block sections of whole prostatectomy specimens. Inverse planned IMRT dose distributions were created to irradiate the prostate to 70 Gy and all the IPTNs to 90 Gy. A second plan was produced to escalate only the dominant IPTN (DIPTN) to 90 Gy, mimicking current imaging techniques. These plans were compared with homogeneous prostate irradiation to 70 Gy using dose-volume histograms, tumour control probability (TCP) and normal tissue complication probability (NTCP) for the rectum. The mean dose to IPTNs was increased from 69.8 Gy to 89.1 Gy if all the IPTNs were dose escalated (p=0.0003). This corresponded to a mean increase in TCP of 8.7-31.2% depending on the alpha/beta ratio of prostate cancer (p
ISSN:0007-1285
1748-880X
DOI:10.1259/bjr.75.890.750151