Yeast Coexpression of Human Papillomavirus Types 6 and 16 Capsid Proteins

The L1 and L2 capsid proteins of animal and human papillomaviruses (HPVs) can self-assemble into virus-like particles (VLPs) that closely resemble native virions. The use of different animal models shows that VLPs can be very efficient at inducing a protective immune response. However, studies with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Virology (New York, N.Y.) N.Y.), 2002-02, Vol.293 (2), p.335-344
Hauptverfasser: Buonamassa, Daniela Tornese, Greer, Catherine E, Capo, Sabrina, Benedict Yen, T.S, Galeotti, Cesira L, Bensi, Giuliano
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The L1 and L2 capsid proteins of animal and human papillomaviruses (HPVs) can self-assemble into virus-like particles (VLPs) that closely resemble native virions. The use of different animal models shows that VLPs can be very efficient at inducing a protective immune response. However, studies with infectious HPV virions and VLPs of different HPV types indicate that the immune response is predominantly type-specific. We have generated a diploid yeast strain that coexpresses the L1 and L2 capsid proteins of both HPV-6b and HPV-16, and we have purified fully assembled VLPs banding in a cesium chloride gradient at the expected density of 1.29–1.3 mg/ml. Experimental evidence strongly indicated that the four proteins coassembled into VLPs. Western blot analysis, using anti-HPV-6 and anti-HPV-16 L1-specific monoclonal antibodies and type-specific L2 antisera, demonstrated that all four proteins copurified. Most importantly, immunoprecipitation experiments, carried out using type-specific anti-L1 monoclonals and either total yeast cell extracts or purified VLPs, confirmed the interaction and the formation of covalent disulfide bonds between the two L1 proteins. Finally, HPV-6/16 VLPs administered to mice induced conformational antibodies against both L1 protein types. These results suggest that coexpression of different capsid proteins may provide new tools for the induction of antibodies directed against multiple HPV types.
ISSN:0042-6822
1096-0341
DOI:10.1006/viro.2001.1289