Molecular arrangements and reorientation behavior in a dibenzopyrene-derivative ferroelectric columnar liquid crystal as studied by time-resolved Fourier-transform ir spectroscopy

Polarized, time-resolved Fourier-transform infrared spectroscopy was employed to study the orientational order and the reorientation dynamics of a diskotic ferroelectric liquid crystal. In the shear oriented cell the dibenzopyrene derivative forms two different field-dependent columnar phases that s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics Statistical physics, plasmas, fluids, and related interdisciplinary topics, 2002-02, Vol.65 (2 Pt 1), p.021707-021707, Article 021707
Hauptverfasser: Shilov, S V, Müller, M, Krüerke, D, Heppke, G, Skupin, H, Kremer, F
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Polarized, time-resolved Fourier-transform infrared spectroscopy was employed to study the orientational order and the reorientation dynamics of a diskotic ferroelectric liquid crystal. In the shear oriented cell the dibenzopyrene derivative forms two different field-dependent columnar phases that show a tripling in the spontaneous polarization. These field-dependent phases are analyzed with respect to the dependence of the infrared absorbance from the polarization plane. In this way it was confirmed that the high-field phase is characterized by a homogeneous orientation of the tilt-plane formed by the core normals n and the column axis N. In contrast, in the low-field phase the columns exhibit several different tilt-planes. The orientational order parameter of the columns is determined. It was also detected that the average orientation of the alkyl tails of the molecules is not lying in the plane of the disklike core. By monitoring the evolution of the infrared bands in the course of the electric-field-induced reorientation, we found that the reorientation process is divided into three steps: A fast initial response followed by a slowing down of the reorientation is observed, which then is followed by an acceleration of the reorientation. In the high-field phase the fast initial electrical induced process can be assigned to a rotation of the molecules around the column axis by a few degrees. During the subsequent ferroelectriclike response the molecules rotate around the column axis by approximately 180 degrees. Other models for this switching mechanisms could be excluded.
ISSN:1539-3755
1063-651X
1095-3787
DOI:10.1103/PhysRevE.65.021707