Dependence of low-frequency sonophoresis on ultrasound parameters; distance of the horn and intensity

Sonophoresis at a frequency of 20 kHz has been shown to enhance transdermal drug delivery, a phenomenon referred to as low-frequency sonophoresis. This study provides an investigation of the dependence of low-frequency sonophoresis on various ultrasound parameters, including the distance of the horn...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of pharmaceutics 2002-03, Vol.235 (1), p.35-42
Hauptverfasser: Terahara, T, Mitragotri, S, Kost, J, Langer, R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sonophoresis at a frequency of 20 kHz has been shown to enhance transdermal drug delivery, a phenomenon referred to as low-frequency sonophoresis. This study provides an investigation of the dependence of low-frequency sonophoresis on various ultrasound parameters, including the distance of the horn from the skin, intensity, and frequency. We performed in vitro experiments with full thickness pig skin to measure enhancements of skin conductivity and drug permeability. Ultrasound was applied to pretreat the skin using a sonicator operating at a frequency of either 20 or 40 kHz. We also measured pitting of aluminum foil to measure cavitation, which is the principal mechanism of low-frequency sonophoresis. The skin conductivity enhancement was found to be inversely proportional to the distance of the horn from the skin. As the intensity increased, skin conductivity enhancement also increased up to a certain threshold, and then dropped off. The intensities ( I max) at which maximum enhancement occur are about 14 W/cm 2 for 20 kHz and 17 W/cm 2 for 40 kHz. These findings may be useful in optimizing low-frequency sonophoresis. Overall, the dependence of transport on ultrasound parameters is similar to that of aluminum foil pitting. These results support the role of cavitation in low-frequency sonophoresis.
ISSN:0378-5173
1873-3476
DOI:10.1016/S0378-5173(01)00981-4