Chemometric resolution of ATR-IR spectra data for polycondensation reaction of bis(hydroxyethylterephthalate) with a combination of self-modeling curve resolution (SMCR) and local rank analysis
Self-modeling curve resolution (SMCR) methods, simple-to-use interactive self-modeling mixture analysis (SIMPLISMA) and alternating least squares (ALS) were used to calculate pure concentration profiles and pure spectra for the two-way spectral data collected during the on-line polycondensation reac...
Gespeichert in:
Veröffentlicht in: | Analyst (London) 2003-01, Vol.128 (11), p.1320-1325 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Self-modeling curve resolution (SMCR) methods, simple-to-use interactive self-modeling mixture analysis (SIMPLISMA) and alternating least squares (ALS) were used to calculate pure concentration profiles and pure spectra for the two-way spectral data collected during the on-line polycondensation reaction of bis(hydroxyethylterephthalate) with an ATR-FT-IR spectrometer. In order to improve the resolution results, SIMPLISMA was combined with local rank analysis method, fixed size moving window evolving factor analysis (FSMWEFA) to search for selective regions of various components and then look for the purest wavenumber variables in the selective regions. Such combination allows more accurate determination of the number of chemical components in the reaction system and the calculations of more accurate concentration profiles and spectra. |
---|---|
ISSN: | 0003-2654 1364-5528 |
DOI: | 10.1039/b304635d |