Synthesis and evaluation of amphiphilic RGD derivatives: uses for solvent casting in polymers and tissue engineering applications

Derivatives containing arginine-glycine-aspartic acid (RGD) inhibit fibrinogen binding to activated platelets and promote endothelial and smooth muscle cell attachment. An amphiphilic derivative of RGD that can be dissolved in an organic solvent has potential in the development of non-thrombogenic b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical & biological engineering & computing 2003-11, Vol.41 (6), p.740-745
Hauptverfasser: KIDANE, A. G, SALACINSKI, H. J, PUNSHON, G, RAMESH, B, SRAI, K. S, SEIFALIAN, A. M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Derivatives containing arginine-glycine-aspartic acid (RGD) inhibit fibrinogen binding to activated platelets and promote endothelial and smooth muscle cell attachment. An amphiphilic derivative of RGD that can be dissolved in an organic solvent has potential in the development of non-thrombogenic biomaterials. Such a derivative, LA-GRGD, was synthesised by coupling glycine-arginine-glycine-aspartic acid (GRGD) with lauric acid (LA). Its solubility and antithrombotic, cytotoxic and cell-binding effects were then evaluated in comparison with heparin (which is used clinically) and a fibronectin-engineered protein polymer (FEPP). Thromboelastography (TEG) was used to measure blood clotting time using fresh whole blood from healthy volunteers. Tissue factor (TF) activity was measured using plasma with a standard prothrombin time assay (PT). Cytotoxicity was assessed on human umbilical cord endothelial cells (HUVECs) using an Alamar blue assay. Solubility of the conjugate was assessed in a co-solvent. These techniques were used to study LA-GRGD, using heparin and FEPP as controls. The amphiphilic property of LA-GRGD was dependent on the feed mole ratio of GRGD to LA. LA-GRGD was soluble in acetone:water and water. LA-GRGD inhibited TF by >90% and prolonged TEG-r by 8.2+/-3.3 min (200 microg ml(-1)). Heparin inhibited TF by >90%, but prolonged TEG-r by 97.4+/-1.6 min (1 U ml(-1)); FEPP inhibited TF by >90% (100 microg ml(-1)) and prolonged TEG-r by 73.7+/-8.4 min (10 microg ml(-1)). Heparin had no cytotoxic effect on EC metabolism and viability at the concentrations studied (0.1-100 U ml(-1)). No significant cytotoxic effect was produced by LA-GRGD or FEPP at concentrations ranging from 0.1 microg ml(-1) to 50 microg ml(-1), but, at higher concentrations (100 microg ml(-1) and 200 microg ml(-1)), a detrimental effect was observed. Cell binding studies showed that LA-GRGD bound 29% of ECs compared with FEPP (60%) and heparin (22%). This new approach for synthesising amphiphilic RGD and its analogues has potential as a drug delivery system for the manufacture of new polymer formulations for use in bypass grafts and other tissue-engineered devices.
ISSN:0140-0118
1741-0444
DOI:10.1007/BF02349983