Spectra of complex networks
We propose a general approach to the description of spectra of complex networks. For the spectra of networks with uncorrelated vertices (and a local treelike structure), exact equations are derived. These equations are generalized to the case of networks with correlations between neighboring vertice...
Gespeichert in:
Veröffentlicht in: | Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics Statistical physics, plasmas, fluids, and related interdisciplinary topics, 2003-10, Vol.68 (4 Pt 2), p.046109-046109, Article 046109 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We propose a general approach to the description of spectra of complex networks. For the spectra of networks with uncorrelated vertices (and a local treelike structure), exact equations are derived. These equations are generalized to the case of networks with correlations between neighboring vertices. The tail of the density of eigenvalues rho(lambda) at large /lambda/ is related to the behavior of the vertex degree distribution P(k) at large k. In particular, as P(k) approximately k(-gamma), rho(lambda) approximately /lambda/(1-2 gamma). We propose a simple approximation, which enables us to calculate spectra of various graphs analytically. We analyze spectra of various complex networks and discuss the role of vertices of low degree. We show that spectra of locally treelike random graphs may serve as a starting point in the analysis of spectral properties of real-world networks, e.g., of the Internet. |
---|---|
ISSN: | 1539-3755 1063-651X 1095-3787 |
DOI: | 10.1103/PhysRevE.68.046109 |