Analysis of a Bayesian repeated measures model for detecting differences in GP prescribing habits
A linear mixed model is used to detect a change, if any, in the prescribing habits in the UK at the general practice (family medicine) level due to an educational intervention given repeated measures data before and after the intervention and a control group. Inferences are corrected for general pra...
Gespeichert in:
Veröffentlicht in: | Statistical methods in medical research 2003-12, Vol.12 (6), p.475-487 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 487 |
---|---|
container_issue | 6 |
container_start_page | 475 |
container_title | Statistical methods in medical research |
container_volume | 12 |
creator | Sithole, Jabu S Jones, Peter W |
description | A linear mixed model is used to detect a change, if any, in the prescribing habits in the UK at the general practice (family medicine) level due to an educational intervention given repeated measures data before and after the intervention and a control group. Inferences are corrected for general practice size and fundholding status. The estimates of the model parameters are obtained using Bayesian inference by applying Gibbs sampling. We develop three different priors for the parameters of the model. These three priors correspond to ‘sceptical,’ ‘reference’ and ‘enthusiastic’ priors in terms of the opinion about the treatment effects that they represent. We compare the results obtained by using these three priors for the parameters in the random effects model. |
doi_str_mv | 10.1191/0962280203sm320ra |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_71463583</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1191_0962280203sm320ra</sage_id><sourcerecordid>791349951</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-bb5bdac46c8d7756dddf7e23836a15ae93f8166f36653f0a54d1188a93567fc73</originalsourceid><addsrcrecordid>eNqFkUtvFDEQhC0URJbAD8glsnLgNsEejx9zDFEISJHgAOdRj90Ojuaxcc8c9t_Hq10pEhHi0j7UV9W2i7FzKa6kbOVn0Zq6dqIWikZViwxv2EY21lZCqeaEbfZ6tQdO2XuiRyGEFU37jp3KxmiltNwwuJ5g2FEiPkcO_AvskBJMPOMWYcHARwRaMxIf54ADj3PmARf0S5oeeEgxYsbJFz1N_O4n3xbU59Tv1T_Qp4U-sLcRBsKPx_OM_f56--vmW3X_4-77zfV95VXbLFXf6z6Ab4x3wVptQgjRYq2cMiA1YKuik8ZEZcrVowDdBCmdg1ZpY6O36ox9OuRu8_y0Ii3dmMjjMMCE80qdLY9W2qn_gtqK1pVRwMu_wMd5zeW_qKulNa5unCmQPEA-z0QZY7fNaYS866To9i11r1oqnotj8NqPGF4cx1oKcHUACB7wZeu_E58BqUubpg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217682486</pqid></control><display><type>article</type><title>Analysis of a Bayesian repeated measures model for detecting differences in GP prescribing habits</title><source>Applied Social Sciences Index & Abstracts (ASSIA)</source><source>SAGE Complete A-Z List</source><source>MEDLINE</source><creator>Sithole, Jabu S ; Jones, Peter W</creator><creatorcontrib>Sithole, Jabu S ; Jones, Peter W</creatorcontrib><description>A linear mixed model is used to detect a change, if any, in the prescribing habits in the UK at the general practice (family medicine) level due to an educational intervention given repeated measures data before and after the intervention and a control group. Inferences are corrected for general practice size and fundholding status. The estimates of the model parameters are obtained using Bayesian inference by applying Gibbs sampling. We develop three different priors for the parameters of the model. These three priors correspond to ‘sceptical,’ ‘reference’ and ‘enthusiastic’ priors in terms of the opinion about the treatment effects that they represent. We compare the results obtained by using these three priors for the parameters in the random effects model.</description><identifier>ISSN: 0962-2802</identifier><identifier>EISSN: 1477-0334</identifier><identifier>DOI: 10.1191/0962280203sm320ra</identifier><identifier>PMID: 14653351</identifier><language>eng</language><publisher>Thousand Oaks, CA: SAGE Publications</publisher><subject>Analysis ; Anti-Inflammatory Agents, Non-Steroidal - therapeutic use ; Bayes Theorem ; Bayesian analysis ; Drug Utilization - statistics & numerical data ; Drug Utilization - trends ; Drugs ; Family Practice - education ; Family Practice - standards ; General practitioners ; Humans ; Ibuprofen - therapeutic use ; Linear Models ; Longitudinal Studies ; Monte Carlo Method ; Practice Patterns, Physicians' - statistics & numerical data ; Practice Patterns, Physicians' - trends ; Prescribing ; Trends ; United Kingdom</subject><ispartof>Statistical methods in medical research, 2003-12, Vol.12 (6), p.475-487</ispartof><rights>Arnold 2003</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-bb5bdac46c8d7756dddf7e23836a15ae93f8166f36653f0a54d1188a93567fc73</citedby><cites>FETCH-LOGICAL-c394t-bb5bdac46c8d7756dddf7e23836a15ae93f8166f36653f0a54d1188a93567fc73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1191/0962280203sm320ra$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1191/0962280203sm320ra$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,12825,21798,27901,27902,30976,30977,43597,43598</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14653351$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sithole, Jabu S</creatorcontrib><creatorcontrib>Jones, Peter W</creatorcontrib><title>Analysis of a Bayesian repeated measures model for detecting differences in GP prescribing habits</title><title>Statistical methods in medical research</title><addtitle>Stat Methods Med Res</addtitle><description>A linear mixed model is used to detect a change, if any, in the prescribing habits in the UK at the general practice (family medicine) level due to an educational intervention given repeated measures data before and after the intervention and a control group. Inferences are corrected for general practice size and fundholding status. The estimates of the model parameters are obtained using Bayesian inference by applying Gibbs sampling. We develop three different priors for the parameters of the model. These three priors correspond to ‘sceptical,’ ‘reference’ and ‘enthusiastic’ priors in terms of the opinion about the treatment effects that they represent. We compare the results obtained by using these three priors for the parameters in the random effects model.</description><subject>Analysis</subject><subject>Anti-Inflammatory Agents, Non-Steroidal - therapeutic use</subject><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Drug Utilization - statistics & numerical data</subject><subject>Drug Utilization - trends</subject><subject>Drugs</subject><subject>Family Practice - education</subject><subject>Family Practice - standards</subject><subject>General practitioners</subject><subject>Humans</subject><subject>Ibuprofen - therapeutic use</subject><subject>Linear Models</subject><subject>Longitudinal Studies</subject><subject>Monte Carlo Method</subject><subject>Practice Patterns, Physicians' - statistics & numerical data</subject><subject>Practice Patterns, Physicians' - trends</subject><subject>Prescribing</subject><subject>Trends</subject><subject>United Kingdom</subject><issn>0962-2802</issn><issn>1477-0334</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>7QJ</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkUtvFDEQhC0URJbAD8glsnLgNsEejx9zDFEISJHgAOdRj90Ojuaxcc8c9t_Hq10pEhHi0j7UV9W2i7FzKa6kbOVn0Zq6dqIWikZViwxv2EY21lZCqeaEbfZ6tQdO2XuiRyGEFU37jp3KxmiltNwwuJ5g2FEiPkcO_AvskBJMPOMWYcHARwRaMxIf54ADj3PmARf0S5oeeEgxYsbJFz1N_O4n3xbU59Tv1T_Qp4U-sLcRBsKPx_OM_f56--vmW3X_4-77zfV95VXbLFXf6z6Ab4x3wVptQgjRYq2cMiA1YKuik8ZEZcrVowDdBCmdg1ZpY6O36ox9OuRu8_y0Ii3dmMjjMMCE80qdLY9W2qn_gtqK1pVRwMu_wMd5zeW_qKulNa5unCmQPEA-z0QZY7fNaYS866To9i11r1oqnotj8NqPGF4cx1oKcHUACB7wZeu_E58BqUubpg</recordid><startdate>200312</startdate><enddate>200312</enddate><creator>Sithole, Jabu S</creator><creator>Jones, Peter W</creator><general>SAGE Publications</general><general>Sage Publications Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0-V</scope><scope>3V.</scope><scope>7QJ</scope><scope>7SC</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>HEHIP</scope><scope>JQ2</scope><scope>K9.</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M2S</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>200312</creationdate><title>Analysis of a Bayesian repeated measures model for detecting differences in GP prescribing habits</title><author>Sithole, Jabu S ; Jones, Peter W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-bb5bdac46c8d7756dddf7e23836a15ae93f8166f36653f0a54d1188a93567fc73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Analysis</topic><topic>Anti-Inflammatory Agents, Non-Steroidal - therapeutic use</topic><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Drug Utilization - statistics & numerical data</topic><topic>Drug Utilization - trends</topic><topic>Drugs</topic><topic>Family Practice - education</topic><topic>Family Practice - standards</topic><topic>General practitioners</topic><topic>Humans</topic><topic>Ibuprofen - therapeutic use</topic><topic>Linear Models</topic><topic>Longitudinal Studies</topic><topic>Monte Carlo Method</topic><topic>Practice Patterns, Physicians' - statistics & numerical data</topic><topic>Practice Patterns, Physicians' - trends</topic><topic>Prescribing</topic><topic>Trends</topic><topic>United Kingdom</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sithole, Jabu S</creatorcontrib><creatorcontrib>Jones, Peter W</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Social Sciences Premium Collection</collection><collection>ProQuest Central (Corporate)</collection><collection>Applied Social Sciences Index & Abstracts (ASSIA)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Sociology Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Sociology Database (ProQuest)</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Statistical methods in medical research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sithole, Jabu S</au><au>Jones, Peter W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of a Bayesian repeated measures model for detecting differences in GP prescribing habits</atitle><jtitle>Statistical methods in medical research</jtitle><addtitle>Stat Methods Med Res</addtitle><date>2003-12</date><risdate>2003</risdate><volume>12</volume><issue>6</issue><spage>475</spage><epage>487</epage><pages>475-487</pages><issn>0962-2802</issn><eissn>1477-0334</eissn><abstract>A linear mixed model is used to detect a change, if any, in the prescribing habits in the UK at the general practice (family medicine) level due to an educational intervention given repeated measures data before and after the intervention and a control group. Inferences are corrected for general practice size and fundholding status. The estimates of the model parameters are obtained using Bayesian inference by applying Gibbs sampling. We develop three different priors for the parameters of the model. These three priors correspond to ‘sceptical,’ ‘reference’ and ‘enthusiastic’ priors in terms of the opinion about the treatment effects that they represent. We compare the results obtained by using these three priors for the parameters in the random effects model.</abstract><cop>Thousand Oaks, CA</cop><pub>SAGE Publications</pub><pmid>14653351</pmid><doi>10.1191/0962280203sm320ra</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0962-2802 |
ispartof | Statistical methods in medical research, 2003-12, Vol.12 (6), p.475-487 |
issn | 0962-2802 1477-0334 |
language | eng |
recordid | cdi_proquest_miscellaneous_71463583 |
source | Applied Social Sciences Index & Abstracts (ASSIA); SAGE Complete A-Z List; MEDLINE |
subjects | Analysis Anti-Inflammatory Agents, Non-Steroidal - therapeutic use Bayes Theorem Bayesian analysis Drug Utilization - statistics & numerical data Drug Utilization - trends Drugs Family Practice - education Family Practice - standards General practitioners Humans Ibuprofen - therapeutic use Linear Models Longitudinal Studies Monte Carlo Method Practice Patterns, Physicians' - statistics & numerical data Practice Patterns, Physicians' - trends Prescribing Trends United Kingdom |
title | Analysis of a Bayesian repeated measures model for detecting differences in GP prescribing habits |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T12%3A26%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20a%20Bayesian%20repeated%20measures%20model%20for%20detecting%20differences%20in%20GP%20prescribing%20habits&rft.jtitle=Statistical%20methods%20in%20medical%20research&rft.au=Sithole,%20Jabu%20S&rft.date=2003-12&rft.volume=12&rft.issue=6&rft.spage=475&rft.epage=487&rft.pages=475-487&rft.issn=0962-2802&rft.eissn=1477-0334&rft_id=info:doi/10.1191/0962280203sm320ra&rft_dat=%3Cproquest_cross%3E791349951%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=217682486&rft_id=info:pmid/14653351&rft_sage_id=10.1191_0962280203sm320ra&rfr_iscdi=true |