Analysis of a Bayesian repeated measures model for detecting differences in GP prescribing habits
A linear mixed model is used to detect a change, if any, in the prescribing habits in the UK at the general practice (family medicine) level due to an educational intervention given repeated measures data before and after the intervention and a control group. Inferences are corrected for general pra...
Gespeichert in:
Veröffentlicht in: | Statistical methods in medical research 2003-12, Vol.12 (6), p.475-487 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A linear mixed model is used to detect a change, if any, in the prescribing habits in the UK at the general practice (family medicine) level due to an educational intervention given repeated measures data before and after the intervention and a control group. Inferences are corrected for general practice size and fundholding status. The estimates of the model parameters are obtained using Bayesian inference by applying Gibbs sampling. We develop three different priors for the parameters of the model. These three priors correspond to ‘sceptical,’ ‘reference’ and ‘enthusiastic’ priors in terms of the opinion about the treatment effects that they represent. We compare the results obtained by using these three priors for the parameters in the random effects model. |
---|---|
ISSN: | 0962-2802 1477-0334 |
DOI: | 10.1191/0962280203sm320ra |