Adsorbed Surfactants as Templates for the Synthesis of Morphologically Controlled Polyaniline and Polypyrrole Nanostructures on Flat Surfaces:  From Spheres to Wires to Flat Films

Nanostructures of polyaniline (PAni) and polypyrrole (PPy) with controlled morphologies have been synthesized on atomically flat surfaces using adsorbed surfactant molecules as templates. Atomic force microscopy (AFM) has been used to investigate polymer film formation on highly oriented pyrolytic g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2003-12, Vol.125 (48), p.14793-14800
Hauptverfasser: Carswell, Andrew D. W, O'Rea, Edgar A, Grady, Brian P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nanostructures of polyaniline (PAni) and polypyrrole (PPy) with controlled morphologies have been synthesized on atomically flat surfaces using adsorbed surfactant molecules as templates. Atomic force microscopy (AFM) has been used to investigate polymer film formation on highly oriented pyrolytic graphite (HOPG) and chemically modified HOPG. Morphological control over the resulting polymer film is possible by the addition of coadsorbing molecules, manipulation of the length of the surfactant hydrophobe, or by changing the surface chemistry of the adsorbing substrate. Phase transitions between spheres, cylinders/wires, and featureless films have been observed which exactly parallel transitions between spheres, cylinders, and flat layers in the adsorbed surfactant. Parallel arrays of PAni nanowires can be synthesized with alignment evident over large areas in a simple self-assembly technique in which fabrication and arrangement take place simultaneously. Such a technique in which one can engineer sub-100-nm-ordered nanoscale π-conjugated polymer structures of a desired shape by a simple self-assembly process presents potential as templates, sensors, and microelectronic devices.
ISSN:0002-7863
1520-5126
DOI:10.1021/ja0365983