Smooth Muscle Myosin Heavy Chain Isoform Distribution in the Swine Stomach

To evaluate the distribution of smooth muscle myosin heavy chain isoforms (SMB, with head insert), we examined frozen sections from the various regions of swine stomachs using isoform-specific antibodies. We previously reported variable SMB myosin heavy chain (MHC) expression in stomach cells that c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of histochemistry and cytochemistry 2002-03, Vol.50 (3), p.385-393
Hauptverfasser: Parisi, Jonathan A, Eddinger, Thomas J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To evaluate the distribution of smooth muscle myosin heavy chain isoforms (SMB, with head insert), we examined frozen sections from the various regions of swine stomachs using isoform-specific antibodies. We previously reported variable SMB myosin heavy chain (MHC) expression in stomach cells that correlates with unloaded shortening velocities. This is consistent with the generalization of tonic fundic muscle having low expression and phasic antral muscle having high expression of the SMB MHC isoform. Using im-munohistochemistry (IHC), we show a progression of the SMB MHC from very low immunoreactivity in the fundus to very intense immunoreactivity in the antrum. In the body, the average level of SMB MHC immunoreactivity lies between that of the antrum and fundus. Intercellular heterogeneity was observed in all stomach regions to a similar extent. However, the intercellular range in SMB MHC immunoreactivity decreases from fundus to antrum. All stomach regions show isolated pockets or clusters of cells with similar SMB MHC immunoreactivity. There is a non-uniform intracellular immunoreactivity in SMB MHC, with many cells showing greater-intensity staining of SMB MHC in their cell peripheries. This information may prove useful in helping to elucidate possible unique physiological roles of SMB MHC.
ISSN:0022-1554
1551-5044
DOI:10.1177/002215540205000309