Redox State Dependence of Single Molecule Conductivity

Spontaneous formation of stable molecular wires between a gold scanning tunneling microscopy (STM) tip and substrate is observed when the sample has a low coverage of α,ω-dithiol molecules and the tunneling resistance is made sufficiently small. Current−distance curves taken under these conditions e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2003-12, Vol.125 (50), p.15294-15295
Hauptverfasser: Haiss, Wolfgang, van Zalinge, Harm, Higgins, Simon J, Bethell, Donald, Höbenreich, Horst, Schiffrin, David J, Nichols, Richard J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Spontaneous formation of stable molecular wires between a gold scanning tunneling microscopy (STM) tip and substrate is observed when the sample has a low coverage of α,ω-dithiol molecules and the tunneling resistance is made sufficiently small. Current−distance curves taken under these conditions exhibit characteristic current plateaux at large tip−substrate separations from which the conductivity of a single molecule can be obtained. The versatility of this technique is demonstrated using redox-active molecules under potential control, where substantial reversible conductivity changes from 0.5 to 2.8 nS were observed when the molecule was electrochemically switched from the oxidized to the reduced state.
ISSN:0002-7863
1520-5126
DOI:10.1021/ja038214e