Multi-Wavelength Mid-Infrared Micro-Spectral Imaging Using Semiconductor Lasers

Infrared (IR, 3–12-μm) microscopic spectral imaging is an important analytical technique. Many current instruments employ thermal IR light sources, which suffer the problem of low brightness and high noise. This paper evaluates the system engineering merit in using semiconductor lasers, which offer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied spectroscopy 2003-07, Vol.57 (7), p.811-822
Hauptverfasser: Guo, B., Wang, Y., Peng, C., Luo, G. P., Le, H. Q.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Infrared (IR, 3–12-μm) microscopic spectral imaging is an important analytical technique. Many current instruments employ thermal IR light sources, which suffer the problem of low brightness and high noise. This paper evaluates the system engineering merit in using semiconductor lasers, which offer orders-of-magnitudehigher power, brightness, and lower noise. A microscopic spectral imaging system using semiconductor lasers (quantum cascade) as illuminators, and focal plane array detectors demonstrated a high signal-to-noise ratio (>20 dB) at video frame rate for a large illuminated area. The comparative advantages of laser vs. thermal light source are analyzed and demonstrated. Microscopic spectral imaging with fixed-wavelength and tunable lasers of 4.6-, 5.1-, 6-, and 9.3-μm wavelength was applied to a number of representative samples that consist of biological tissues (plant and animal), solid material (a stack of laminated polymers), and liquid chemical (benzene). Transmission spectral images with ∼30-dB dynamic range were obtained with clear evidence of spectral features for different samples. The potential of more advanced systems with a wide coverage of spectral bands is discussed.
ISSN:0003-7028
1943-3530
DOI:10.1366/000370203322102906