Naturally-occurring modification restricts the anticodon domain conformational space of tRNA(Phe)
Post-transcriptional modifications contribute chemistry and structure to RNAs. Modifications of tRNA at nucleoside 37, 3'-adjacent to the anticodon, are particularly interesting because they facilitate codon recognition and negate translational frame-shifting. To assess if the functional contri...
Gespeichert in:
Veröffentlicht in: | Journal of molecular biology 2003-12, Vol.334 (5), p.901-918 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Post-transcriptional modifications contribute chemistry and structure to RNAs. Modifications of tRNA at nucleoside 37, 3'-adjacent to the anticodon, are particularly interesting because they facilitate codon recognition and negate translational frame-shifting. To assess if the functional contribution of a position 37-modified nucleoside defines a specific structure or restricts conformational flexibility, structures of the yeast tRNA(Phe) anticodon stem and loop (ASL(Phe)) with naturally occurring modified nucleosides differing only at position 37, ASL(Phe)-(Cm(32),Gm(34),m(5)C(40)), and ASL(Phe)-(Cm(32),Gm(34),m(1)G(37),m(5)C(40)), were determined by NMR spectroscopy and restrained molecular dynamics. The ASL structures had similarly resolved stems (RMSD approximately 0.6A) of five canonical base-pairs in standard A-form RNA. The "NOE walk" was evident on the 5' and 3' sides of the stems of both RNAs, and extended to the adjacent loop nucleosides. The NOESY cross-peaks involving U(33) H2' and characteristic of tRNA's anticodon domain U-turn were present but weak, whereas those involving the U(33) H1' proton were absent from the spectra of both ASLs. However, ASL(Phe)-(Cm(32),Gm(34),m(1)G(37),m(5)C(40)) exhibited the downfield shifted 31P resonance of U(33)pGm(34) indicative of U-turns; ASL(Phe)-(Cm(32),Gm(34),m(5)C(40)) did not. An unusual "backwards" NOE between Gm(34) and A(35) (Gm(34)/H8 to A(35)/H1') was observed in both molecules. The RNAs exhibited a protonated A(+)(38) resulting in the final structures having C(32).A(+)(38) intra-loop base-pairs, with that of ASL(Phe)-(Cm(32),Gm(34),m(1)G(37),m(5)C(40)) being especially well defined. A single family of low-energy structures of ASL(Phe)-(Cm(32),Gm(34), m(1)G(37),m(5)C(40)) (loop RMSD 0.98A) exhibited a significantly restricted conformational space for the anticodon loop in comparison to that of ASL(Phe)-(Cm(32),Gm(34),m(5)C(40)) (loop RMSD 2.58A). In addition, the ASL(Phe)-(Cm(32),Gm(34),m(1)G(37),m(5)C(40)) average structure had a greater degree of similarity to that of the yeast tRNA(Phe) crystal structure. A comparison of the resulting structures indicates that modification of position 37 affects the accuracy of decoding and the maintenance of the mRNA reading frame by restricting anticodon loop conformational space. |
---|---|
ISSN: | 0022-2836 |
DOI: | 10.1016/j.jmb.2003.09.058 |