Effect of organic solvents on stability and activity of two related alcohol dehydrogenases: a comparative study

A comparative study was performed regarding the catalytic activity and stability of two related enzymes (thermophilic alcohol dehydrogenase from Thermoanaerobacter brockii and its mesophilic counterpart from yeast) in the presence of a number of miscible and immiscible organic solvents. The study wa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The international journal of biochemistry & cell biology 2002-02, Vol.34 (2), p.169-175
Hauptverfasser: Miroliaei, Mehran, Nemat-Gorgani, Mohsen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A comparative study was performed regarding the catalytic activity and stability of two related enzymes (thermophilic alcohol dehydrogenase from Thermoanaerobacter brockii and its mesophilic counterpart from yeast) in the presence of a number of miscible and immiscible organic solvents. The study was performed in view of the practical usefulness of organic solvents for alcohol dehydrogenases which have been shown to catalyse a variety of industrially-important dehydrogenation reactions. A number of organic solvents of different physicochemical characteristics were used and substantial stabilization was achieved. The non-polar solvents utilized showed the ability to enhance thermal stability of both proteins. Protection against thermal denaturation was especially pronounced by n-dodecane, the solvent with the highest log P used in the present study. Dimethylformamide and dioxane, employed as two miscible organic solvents, showed the ability to cause substrate inhibition and changes in protein conformation as indicated by kinetic and fluorescence studies. A higher resistance of the thermophilic protein to the deleterious effect of pyridine and thermostabilization of the mesophilic enzyme by non-polar solvents are especially emphasized. Combined differences in protein structure and nature of organic solvents are suggested to explain the differences in stability and catalytic activity observed in the present investigation.
ISSN:1357-2725
1878-5875
DOI:10.1016/S1357-2725(01)00109-1