Testing of skeletal implant surfaces with human fetal osteoblasts

The effect of standard orthopaedic implant materials on osteoblast proliferation and differentiation was investigated using a human osteoblast cell culture system. Human fetal osteoblasts 1.19 were cultured on stainless steel, cobalt-chrome-molybdenum, and commercially pure titanium for 12 days. Tis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clinical orthopaedics and related research 2002, Vol.394 (394), p.278-289
Hauptverfasser: HENDRICH, Christian, NÖTH, Ulrich, STAHL, Ulrich, MERKLEIN, Frank, RADER, Christoph P, SCHÜTZE, Norbert, THULL, Roger, TUAN, Rocky S, EULERT, Jochen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The effect of standard orthopaedic implant materials on osteoblast proliferation and differentiation was investigated using a human osteoblast cell culture system. Human fetal osteoblasts 1.19 were cultured on stainless steel, cobalt-chrome-molybdenum, and commercially pure titanium for 12 days. Tissue culture polystyrene was used as a control. Cell proliferation was measured by electronic cell counting and by a colorimetric proliferation assay. To assess the degree of differentiation, levels of alkaline phosphatase activity, collagen Type I, and osteocalcin production were measured. Osteocalcin gene expression was measured by reverse transcriptase-polymerase chain reaction. Electronic cell counting and proliferation assays showed lower cell numbers and delayed proliferation on stainless steel and cobalt-chrome-molybdenum compared with titanium and polystyrene. Alkaline phosphatase and osteocalcin were measured higher on titanium than on stainless steel or cobalt-chrome-molybdenum. Differences in collagen Type I production were not found. Reverse transcriptase-polymerase chain reaction showed the highest osteocalcin gene expression on titanium. The human fetal osteoblast cell line 1.19 provides a rapidly proliferating and differentiating system for testing biomaterials in which differences in osteoblast proliferation and differentiation on orthopaedic implant materials could be revealed, suggesting that the chemistry of biomaterials has a dynamic effect on proliferation and differentiation of human osteoblasts.
ISSN:0009-921X
1528-1132
DOI:10.1097/00003086-200201000-00033