The significance of the Golgi complex in envelopment of bovine herpesvirus 1 (BHV-1) as revealed by cryobased electron microscopy
Nucleocapsids of herpesviruses originate in the nucleus of host cells and bud through the inner nuclear membrane acquiring tegument and envelope. The release of the enveloped virus particle from the perinuclear space is unknown. Cryobased electron microscopic imaging revealed enveloped virus particl...
Gespeichert in:
Veröffentlicht in: | Micron (Oxford, England : 1993) England : 1993), 2002, Vol.33 (4), p.327-337 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Nucleocapsids of herpesviruses originate in the nucleus of host cells and bud through the inner nuclear membrane acquiring tegument and envelope. The release of the enveloped virus particle from the perinuclear space is unknown. Cryobased electron microscopic imaging revealed enveloped virus particles within cisterns associated with the perinuclear space, a pre-Golgi compartment connecting Golgi cisterns to the perinuclear space, and enveloped virus particles in Golgi cisterns where they are packaged into transport vacuoles by membrane fission. To our knowledge, our images show for the first time the connectivity from the perinuclear space to Golgi cisterns. The data strongly indicate an intracisternal transport of enveloped virus particles from the budding site to the packaging site. Budding starts by condensation at the inner membrane. Condensation involving the viral envelope and peripheral tegument was persistent in virus particles within perinuclear space and associated cisterns. Virus particles within Golgi cisterns and transport vacuoles originating by Golgi membrane fission, however, lacked condensation. Instead, spikes were clearly evident. The phenomenon of condensation is considered likely to be responsible for preventing fusion of the viral envelope with cisternal membranes and/or for driving virions from the perinuclear space to Golgi cisterns. Glycoprotein K is discussed to likely play a role in the intracisternal transportation of virions. In addition to the pathway including intracisternal transport and packaging, there were clear indications for the well-known pathway involving wrapping of cytoplasmic nucleocapsids by Golgi membranes. The origin of the cytoplasmic nucleocapsids, however, remains obscure. Lack of evidence for release of nucleocapsids at the outer nuclear membrane suggests that the process is very rapid, or that nucleocapsids pass the nucleocytoplasmic barrier via an alternative route. |
---|---|
ISSN: | 0968-4328 1878-4291 |
DOI: | 10.1016/S0968-4328(01)00037-3 |