Preparation and functional evaluation of RGD-modified proteins as alpha(v)beta(3) integrin directed therapeutics
Tumor blood vessels can be selectively targeted by RGD-peptides that bind to alpha(v)beta(3) integrin on angiogenic endothelial cells. By inhibiting the binding of these integrins to its natural ligands, RGD-peptides can serve as antiangiogenic therapeutics. We have prepared multivalent derivatives...
Gespeichert in:
Veröffentlicht in: | Bioconjugate chemistry 2002-01, Vol.13 (1), p.128-135 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Tumor blood vessels can be selectively targeted by RGD-peptides that bind to alpha(v)beta(3) integrin on angiogenic endothelial cells. By inhibiting the binding of these integrins to its natural ligands, RGD-peptides can serve as antiangiogenic therapeutics. We have prepared multivalent derivatives of the cyclic RGD-peptide c(RGDfK) by covalent attachment of the peptide to side chain amino groups of a protein. These RGDpep-protein conjugates inhibited alpha(v)beta(3)-mediated endothelial cell adhesion in vitro, while conjugates prepared with a control RAD-peptide showed no activity. Radiobinding and displacement studies with endothelial cells demonstrated an increased affinity of the RGDpep-protein conjugates compared to the free peptide, with IC(50) values ranging from 23 to 0.6 nM, depending on the amount of coupled RGDpep per protein. Compared to the parental RGD-peptide and the related RGD-peptide ligand c(RGDfV), the RGDpep-protein conjugates showed a considerable increase in affinity (IC(50) parent RGDpep: 818 nM; IC(50) c(RGDfV): 158 nM). We conclude that the conjugation of RGD-peptides to a protein, resulting in products that can bind multivalently, is a powerful approach to increase the affinity of peptide ligands for alpha(v)beta(3)/alpha(v)beta(5) integrins. |
---|---|
ISSN: | 1043-1802 |
DOI: | 10.1021/bc015561+ |