The observation of intact hepatic endothelial cells by cryo‐electron microscopy

Summary Liver sinusoidal endothelial cells (LSECs) can optimally be imaged by whole mount transmission electron microscopy (TEM). However, TEM allows only investigation of vacuum‐resistant specimens and this usually implies the study of chemically fixed and dried specimens. Cryo‐electron microscopy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of microscopy (Oxford) 2003-11, Vol.212 (2), p.175-185
Hauptverfasser: Braet, F., Bomans, P. H. H., Wisse, E., Frederik, P. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Summary Liver sinusoidal endothelial cells (LSECs) can optimally be imaged by whole mount transmission electron microscopy (TEM). However, TEM allows only investigation of vacuum‐resistant specimens and this usually implies the study of chemically fixed and dried specimens. Cryo‐electron microscopy (cryo‐EM) can be used as a good alternative for imaging samples as whole mounts. Cryo‐EM offers the opportunity to study intact, living cells while avoiding fixation, dehydration and drying, at the same time preserving all solubles and water as vitrified ice. Therefore, we compared the different results obtained when LSECs were vitrified using different vitrification conditions. We collected evidence that manual blotting at ambient conditions and vitrification by the guided drop method results in the production of artefacts in LSECs, such as the loss of fenestrae, formation of gaps and lack of structural details in the cytoplasm. We attribute these artefacts to temperature and osmotic effects during sample preparation just prior to vitrification. By contrast, by using an environmentally controlled glove box and a vitrification robot (37 °C and 100% relative humidity), these specific structural artefacts were nearly absent, illustrating the importance of controlled sample preparation. Moreover, data on glutaraldehyde‐fixed cells and obtained by using different vitrification methods suggested that chemical prefixation is not essential when vitrification is performed under controlled conditions. Conditioned vitrification therefore equals chemical fixation in preserving and imaging cellular fine structure. Unfixed, vitrified LSECs show fenestrae and fenestrae‐associated cytoskeleton rings, indicating that these structures are not artefacts resulting from chemical fixation.
ISSN:0022-2720
1365-2818
DOI:10.1046/j.1365-2818.2003.01229.x