Role of apoptosis in hypoxic/ischemic damage in the kidney
Cell death by hypoxia/ischemia may occur by apoptosis as well as necrosis in experimental models of renal injury both in vivo and in vitro. Necrosis can occur during hypoxia/ischemia as a result of widespread cellular degradation, and during reoxygenation/reperfusion as a consequence of the developm...
Gespeichert in:
Veröffentlicht in: | Seminars in nephrology 2003-11, Vol.23 (6), p.511-521 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Cell death by hypoxia/ischemia may occur by apoptosis as well as necrosis in experimental models of renal injury both in vivo and in vitro. Necrosis can occur during hypoxia/ischemia as a result of widespread cellular degradation, and during reoxygenation/reperfusion as a consequence of the development of the mitochondrial permeability transition pore (PTP). In vitro models of hypoxia/reoxygenation suggest that apoptotic cell death may occur during reoxygenation as a consequence of mitochondrial release of cytochrome
c (Cyt
c) during hypoxia. In hypoxic renal cells, Bax and Bak, 2 pro-apoptotic proteins of the Bcl-2 family, collaborate to permeabilize the mitochondrial outer membrane to intermembrane proteins such as Cyt
c, although Bax, per se, appears to play the dominant role. Cyt
c then acts to trigger the downstream apoptotic cascade. Caspase inhibitors suppress these downstream events, but not Cyt
c release. However, the anti-apoptotic Bcl-2 prevents mitochondrial permeabilization and maintains viability. Inflammation is known to play a major role in exacerbating parenchymal damage during reperfusion. Recent studies suggest that the apoptosis-related mechanisms contribute to the inflammatory process. By inhibiting tubular cell apoptosis, by suppressing an apoptotic chain reaction in accumulating inflammatory cells, and by inhibiting caspase-1 processing in injured tissue, caspase inhibitors may reduce inflammation, and thereby reduce the cascading parenchymal injury that is associated with inflammation. |
---|---|
ISSN: | 0270-9295 1558-4488 |
DOI: | 10.1053/S0270-9295(03)00130-X |